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CRITICAL CONDITIONS FOR THERMAL EXPLOSION IN CONDUCTIVE HEAT
TRANSFER IN THE REACTION ZONE AND THE SURROUNDING MEDIUM
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The critical conditions for thermal explosion are examined for plane,
sphere, and cylinder in an unbounded medium with convective heat
transfer in the internal and external regions. Criteria are used in
integro-differential equations in the form of a Duhamel integral,
which allow the conjugate problem to be reduced to a boundary one,
Critical conditions are calculated by computer, with analysis for the
cases of greatest practical interest.

NOTATION

¢ is the thermal capacity; p is the density; A is the
thermal conductivity; a is the thermal diffusivity: Q is
the heat of reaction; E is the activation energy; k; is
the preexponential factor; 1 is the extent of reaction;
T is the temperature; T, is the temperature of sur-
rounding medium; 1y is the characteristic dimension
of body . Symbols with subscript 1 refer to the sur-
rounding medium.

1. The problem of thermal explosion may be for-
mulated as follows in terms of dimensionless quantities
for conductive heat transfer from a body in an un-
bounded medium:

a) Equation of conduction in the body:
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Tg—r=(9(ﬂ) eXPm‘l‘g(g@‘l‘%%) E<; (1.1)

b) Equation of conduction in the medium:
1
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¢) Kinetic equation:
i 0
52 = P () exp g - (L.3)
Initial conditions:
=90, 1n=0  06=0 (1.4)
Boundary conditions:
/0t =10, E=0 6->0, E-—o0. (1.5)
Conditions for junction of solutions:
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Here § is temperature, 7 is time, and £ is coordi-
nate:

E _ E P
9=W(T—TO), T—koexp(-—m)t, E=
Dimensionless parameters:
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The number n characterizes the symmetry: n=0,
planar case; n =1, cylindrical; n = 2, spherical; ¢(n)
is the kinetic function. In the case of a first-order re-
action, o) =1~ 17,

This problem has been solved by computer for
wide ranges in the parameters.

2, The initial conjugate problem may be divided
into two parts: an internal one (§ = 1), where there
are continuously distributed heat sources, and an ex-
ternal one (¢ = 1), where we have a classical problem
in the theory of heat conduction, which may be formu-
lated as follows as an independent problem:

8
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t=0, 8=0; E£E=1-+0,
0=0(1); E-—>ecc, 0-0, 2.2)

The solution to this characterizes the external heat
transfer of a body in an unbounded medium, Solutions
to many such problems are well known, mainly for
particular cases where the temperature at the surface
of the body remains constant (¢ = 1).

Then for the above three cases we have [1]
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Here N is Nusselt's number, F is the Fourier num-
ber, and Iy(u) and Yy(u) are Bessel functions of zero
order and of the first and second kinds.

Then N — 0 for ¥ — « for a plane or cylinder, i.e.,
these do not allow of a steady state in external heat
transfer, since the temperature in the external medium
tends to equalize, N — 1 for F — « in the case of a
sphere.

Then for ¥ large, namely

1/VYaF <1,

the deviation from stationary thermal conditions may
be neglected.

If the surface temperature varies, with 0 |z—40 =
= 0 (t) a function of arbitrary form, the external con-
duction problem may be solved by the methods of op-
erational calculus, the solution giving the varying heat
flow through the surface of the body. Then use of Eq.
(1.6) allows one to reduce the conjugate problem to a
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boundary one, the boundary condition for £ = 1 béing
provided by integro-differential relations in the form
of a Duhamel integral.
For instance, for the above three cases
Yz
_ 27"
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Another boundary condition is the symmetry condi-
tion of (1.5).

The problem is thus reduced to one described by
Egs. (1.1) and (1.3), the initial condition (1.4), and the
boundary conditions (1.5) and (2.4)-(2.6).

Given the form of 6(r), these integro-differential
relations allow one to write down the expression for
Nusselt's number

138
N=— %z,

for a variable surface temperature in each particular
case,
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Fig, 1. Semenov diagram:
q,) direct heat loss, q,) rate
of heat release.

The form of 8(r) is not known in advance in prob-
lems of thermal explosion; this is to be determined.
All the same, the Duhamel integral simplifies the
analysis and the data processing.

3. The first two shapes of body do not provide a
steady-state temperature distribution in the medium,
and N — 0 for 7 = o, go critical conditions for ther-
mal explosion for these bodies can exist only as a re-
sult of consumption of the material in a decomposition
reaction of order higher than zero. Explosive decom-
position will occur for any values of the parameters in
the case of a zero-order reaction.

This is conveniently illustrated by Semenov's dia-
gram [2] (Fig. 1).

As N — 0 as 7 — o, the direct loss q; will decrease
(Ty < 79 < T3). The heat release is represented by a
single curve for a zero-order reaction, so the heat
output exceeds the heat loss in the course of time for
any given values of the parameters, which inevitably
leads fo spontaneous ignition; critical conditions do not
exist. A nonzero-order reaction, whose rate is depen-
dent on the concentrations, will have g; falling as a re-

sult of consumption of material during the pre-explo-
sion period, so the reaction may occur explosively or
otherwise, in accordance with the relations between
the parameters, and critical conditions do exist.
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Fig. 2. The relation 64 =
= folo) for y= 0,005 and 8 =
= 0,03; curve 1 is 6x = 7.8/0y,

N — 1 and 7 — « in the case of a sphere, and criti-
cal thermal-explosion conditions will exist for a reac-
tion of any order.

Four parameters determine the critical values of
8% (Frank-Kamenetskii's parameter [3]), which de-
fine the boundary between the regions of explosive and
nonexplosive reaction: 0x = fn(w;\, Way Vs B).

We assume, as usual,T that the 8 and y of (1.1)
have little effect on dx; we employ the new dimension-
less parameter ¢ (obtained by reducing the problem tc
a boundary one) to simplify the relations:

nzov 6*=f0(0)
n=1, 8,="Ff (0, ®)
n=2, 8, =/fy(0, m).

The problem thus reduces to that of finding the
forms of the functions f,,, which are substantially de-
pendent on the geometry.
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Fig. 3. The relation o,8, =
= F(aw,/? for y=0.005, 8=
= 0,03, and Wy of: 1) 10;

2) 55 3) 1,

4, Numerical calculations have been performed for the conjugate
and boundary problems; the results agree to ~10%.

a) The 84 for a plane is a function of o alone; Fig. 2 shows 8x«=
= fy(o).

Here there are two limiting regions to consider. For ¢ = 0, it fol-
lows from (2.4) that 6};_, — 0, i.e., we have conditions such that
rapid external heat transfer causes the temperature at £ = 1 to remain

Tsee [4-6] on the dependence of dy on 8 and .
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Fig. 4. The relation 3, = Fig. 5. Relation of 64/0x, to
= f1 {0, »,) for y= 0,005, = g for plane, cylinder, and

= 0.03, and wy of: 1)0.1; sphere for ¥ = 0.005 and 8 =
2) 1;3) 2; 4) 4, The dashed =0.03; wy=1forn=1and
lines represent the asymp- n=2,

totic values of éx given by the
steady-state theory.

M‘ ‘qma.':
; /

0.175‘\ / ‘ 24 /

oo az

N 7 I
202 14/ 2 i 6 i
g . 200 4 8 2 5
Fig, 6. The relationof k= Fig. 7. Relation of 7y,
= yd8/dr to T for y = 0.005 (degree of decomposition
and 6/6, = 1.13, corresponding to maximum

temperature rise) to o for
8/6,=0.87,n=0, y=
='0,005, and B8 = 0.03,
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constant at Ty (boundary conditions of the first kind). Then &«, as cor-
tected for y = 0 and B = 0 [6], coincides with the §« for a plane cal-
culated in [3].

As o increases, (2.4) shows that the heat flow through the surface
decreases, and 8, falls; 90/68};..,— O for o6~ %, and &« also tends
to 0.

For o large, the low rate of dispersal of heat in the medium (rela-
tive to the body) means that there will be no temperature gradient in
the reaction zone.

The following equations allow us to represent the problem via
(2.4) if the temperature gradients in the reaction zone are neglected:

a0 8 1 d¢ 08()
Vi =P P Vie:®

dn 0
W:@(n)expm‘, =0, 0=0, u=40. 4.1)

For the critical conditions, neglecting the effects of 8 and y, we
have Q, = constant, so &« = f,(0) for 6 — = is

5*= C’./Oz.

The ¢, given by the solution of (4.1) is 7.35 =+
+ 0.5, which agrees with the c; = 7.8 derived from 6,(0)
(Fig. 2) for ¢ large.

The calculations show that ¢ < 0.7 and ¢ > § corre-
gpond to within ~5% with the limiting conditions for
ideal heat transfer at the surface (boundary conditions
of the first kind) and zero temperature gradient in the
reaction zone respectively.

b) From Eq. (2.5), we have [1] for a cylinder for
=0, wy # 0, and z # 0 that

I ~_§° ( u%%z du T 0y Vs
RN I O E S A0 I W

Then
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i.e., the result for ¢ small is as for a plane, and
8, = filo, &) = f, (0).

We can determine 6, inthis range from the calcu-
lated results for a plane, with &, = f; (o) = 2.27 f, (0).
For o — o, wy * 0, and z # 0, we have
¢ 0(t —3)

— 24
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Hence 64 —~ 0. The temperature gradient in the re-
action zone is small when the conditions deviate widely
from those of the first kind, as for a plane,

Then (2.5) becomes for a cylinder

a0 0 8 df
TEI@(ﬂ)eXPm*mESG(T—Z)X
0
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ce
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6
dT*‘P(ﬂ)eXqu =0, 8=0, n=0.(42)

The functional relation between the parameters for critical condi-
tions is then

Tw
0,8 =@ ( ,f}.
* (%A

Figure 3 shows the form of this relationship, The region of nearly
zero temperature gradient in the reaction zone is reached the earlier
(at lower o) the greater w, .

¢) Figure 4 shows &, = f, (5, w,) for a sphere.

We have 8« ~> 3.32 (with correction for y and 8) for o =0 (or W >
~» 0). The effects of o become slight (saturation) as o increases, and
§+ in this range is dependent only on w, . Physically, this means that
the nonstationary external transfer can be replaced by quasi-stationary
transfer, with & = X\;/rg [7] the expression for the coefficient of external
heat transfer. Here 1/w, has the meaning of Biot's number [see Eq.
(2.8)]. The calculations show that the deviation from statjonary heat
transfer can be neglected (with an error of ~10% in &+) for 6 = 50 and
w, = 4.

If w,y is large and o — «, the temperature gradient in the reaction
zone is small, and 8« can be found by Semenov's method [8]: §, =
=3/ wye. The gradient cannot be neglected for wy small, and the
boundary problem should be used to find &, [9]s

1.66

3e = w—2( VT 4w,?—1) exp (V1 = 4o, E— 20, —1).
A

The two methods give the same results (to ~5%) for this limiting
case for wy, = 2, i. e, the gradient can be neglected in this range.

This formulation of the problem is thus the most general in the case
of spherical symmetry. It implies as limiting cases solutions known from
the theory of thermal explosion: Frank-Kamenetskii's [3] (¢ — 0 or
wy > 0), Semenov's [2] (0 = = and wy > «), and the boundary theory
[9] (0 = ).

5. The results allow us to examine the conditions for thermal ex-
plosion for n of 0, 1, and 2 in various real cases.

Ignition of spherical particles of explosive in a hot gas is charac-
terized by w, ® 4, o = 10°%; so we can use the stationary approach
(since o > 50) to determine the critical conditions and can neglect the
temperature gradient in the particles (wy > 2), i.e., we have Seme-
nov's case [2].

For explosion mixture in a thin-walled container, wy =0.05 and
o =~ 0.2, and all three shapes have boundary conditions of the first kind
(Frank-Kamenetskii's case [3]).

For condensed material in molten lead or Wood's metal (wy = 0.01,
o =~ 2.5), we have boundary conditions of the first kind for cylinder and
sphere (wy = 0), but not for a plane (Fig. 2).

For condensed material in a glass block (wy ~ 0.2, o ~ 10}, for a
suspension {wy & 0.4, o = 12), and for hot spots in a reactive mass
(wy #1, o~ 18), etc., if is essential to consider the specific features
of the external conductive heat transfer; the critical conditions for ther-
mal explosion may be derived from the present results,

The thermophysical parameters of [10, 11] have been used in de-
riving the dimensionless parameters,

6. Thermal explosion in the presence of conductive heat transfer
has the following features:

a) The precise trends are very much dependent on the geometry.
Only the spherical case produces a steady state under certain conditions
and thus allows the classical approach to the critical conditions (steady-
state theory). The other cases, except the limiting case of ideal heat
transfer at the surface, have the critical conditions essentizlly linked to
consumption of the material. The effects of consumption are in the
nature of a correction in the case of convective external transfer.

It has been shown [6, 9] that §,/8,, (in which 8, is the value for
boundary conditions of the first kind) for convective heat transfer from
the surface is the same for all three cases, all conditions being the
same. This is so in the present problem only for o small; the 5./8.0
for the various shapes may differ substantially if o is large (Fig. 5).

b) The relation of internal transfer to external transfer is indepen-
dent of size for ail three shapes (the size does not appear in the basic
parameters o and wy), and so the size does not affect the transition
from ideal transfer to absence of temperature gradient in the reaction
zone. The principal parameter for convective transfer is Bi, which
does depend on the size.

c) A nonautocatalytic reaction near the self-ignition limit can
take a quasi-stationary course in the case of conductive transfer to the
medium, because N(T) represents a time dependence. The quasi-
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stationary theory of thermal explosion deals with conditions such that
the balance between heat production and heat loss gradually shifts on
account of change in some quantity. An autocatalytic reaction [12]
produces this shift by isothermal increase in the reaction rate, while
under dynamic heating conditions [13, 14] the cause is increase in the
temperature of the medium (in this case, reduction in the effective
heat-transfer coefficient). Figure 6 illustrates the quasi-stationary
condition for this problem by reference to the function [12] k = yd6é/dn,
which characterizes the ratio of the heat-accumulation rate to the
heat-loss rate. If k << 1, the state is quasi-stationary, and one conse-
quence of this state is the greater extent of pre-explosion reaction
characteristic of these conditions (Fig. 7).

An approximate quasi-stationary treatment for o large in the planar
case gives us the system of equations

0 0
T'E=‘P(ﬂ)expm'~'§ﬁ

dn 0
T = PMexpiRg. v=0, 6=0, n=0 (61)

(as 6(z) varies little relative to vT — z, it can be extracted from the
integral and the derivative),

We have @, = const for critical conditions. Numerical inte=
gration gives = 1,37 + 0,12 for y = 0,005 and 8 = 0,08, while inte-
gration of (4.1) for the same y and 8 gives @, = 2.7 & 0.1, The ap-
proximate approach gives a result different from that for the exact ap-
proach on account of the long time needed to reach the quasi-station-~
ary state in this case.

We are indebted to B. I. Khaikin and V. V. Barzyk-
in for valuable advice,
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